Федеральное государственное бюджетное образовательное учреждение высшего образования «Адыгейский государственный университет»

Региональный центр выявления и поддержки одаренных детей «Полярис – Адыгея» Государственной бюджетной организаций дополнительного образования Республики Адыгея «Республиканская естественно-математическая школа»

«УТВЕРЖДАЮ»

Ректор ФГБОУ ВО АГУ

Д.К. Мамий

«14» ноября 2022 г.

Директор ГБО ДО РА РЕМШ

С.Р. Беджанова

«14» ноября 2022 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА, РЕАЛИЗУЮЩАЯСЯ В РАМКАХ «ОСЕННЕЙ ПРОЕКТНОЙ ШКОЛЫ», «ГЕНЕТИКА И БИОМЕДИЦИНА»

Направление: Наука

Направленность программы: Естественнонаучная

Автор программы: Шумилов Дмитрий Сергеевич,

к.б.н., старший научный сотрудник отдела медико-биологических проблем НИИ Комплексных проблем ФГБОУ ВО «Адыгейский государственный университет», заведующий лабораторией «Биохакинга» регионального центра выявления и поддержки одаренных детей «Полярис — Адыгея»

г. Майкоп 2022

Пояснительная записка.

«Генетика Программой И биомедицина» предусмотрено проведение Помимо групповой работы лекционных И практических занятий. проводиться и индивидуальная. Для школьников планируется проведение теоретико-практических биологии, курсов по молекулярной генетике иммунологии, включающих элементы научно-исследовательской работы. На ребята учатся проводить секвенирование практических занятиях поколения, оценивать экспрессию генов, определять количество малых не кодирующих PHK, проводить статистические расчеты, полученных экспериментальных данных с использованием пакета прикладных программ SPSS Statistics 17.0 (Inc., Chicago, USA) и Office Excel 2016 (Microsoft). По окончании обучения всем учащимся предстоит подготовить теоретически обоснованную концепцию проведенного научного исследования в виде итоговой научной работы в конце смены.

Наиболее актуальным в современном образовании является создание систем поиска и поддержки талантливой молодёжи, обеспечение условий для её обучения, воспитания и самореализации в изменчивом социуме. Актуальность и практическая значимость данной программы обусловлена тем, что социально значимые заболевания, имеющие различную этиологию и патогенез чаще всего развиваются не в следствии внешних воздействий, а в результате нарушений в функционирование иммунной ответственных за системы, занятиях, МОГУТ полученные школьниками на быть использованы прогностической и персонифицированной медицине.

В проекте Концепции развития здравоохранения в Российской Федерации до 2025 года подчеркивается необходимость изменения существующей ситуации, с точным эпидемиологическим анализом данных в отдельных регионах страны в социально-экономических, объективных различий В экологических, этнических других факторов. Этот факт И обусловливает актуальность и важность выявления причинно-следственных факторов в развитии заболеваний различных территориях значимых на Педагогическая целесообразность программы заключается в пробуждении у школьников живого интереса к комплексу биологических наук, понимания сложности современной молекулярной биологии, а также в мотивации учащихся к освоению биологических знаний в области иммунологии и генетики, для их дальнейшего применения в персонализированной и прогностической медицине; предыдущие программы доказали свою эффективность, по результатам их реализации один школьник стал победителем и пять школьников призерами заключительного этапа всероссийского конкурса «Большие вызовы».

Новизна программы заключается в том, что впервые будут использованы методы секвенирования нового поколения, а также анализ экспрессии генов, также программа направлена на подготовку школьников по основному приоритетному направлению Федеральной научно-технической программы развития генетических технологий на 2019 – 2027 годы, созданной в соответствии

с подпунктом «а» пункта 1 Указа Президента Российской Федерации от 28 ноября 2018 г. № 680 «О развитии генетических технологий в Российской Федерации» и утвержденной постановлением Правительства Российской Федерации от 22 апреля 2019 г. № 479, где основная цель — это комплексное решение задач ускоренного развития генетических технологий, в том числе технологий генетического редактирования, и создании научно-технологических заделов для персонализированной медицины.

Участники программы:

Кол-во обучающихся – 12

Группы: 8-10 класс; 2 группы.

Возраст обучающихся: 14-17 лет;

Отбор на программу осуществлен на основании следующих критериев:

- участие в программе «Иммуногенетика и биомедицина», реализующейся на регулярной основе;
- 90% посещение занятий программы;
- учебного рейтинга, включающего ответы на занятии, работу с базами данных, подготовку презентации, поиск и подбор праймеров.
- уровня выполнения задания в форме презентации.

Сроки и место реализации программы, режим занятий.

Сроки проведения: с 21 ноября по 3 декабря 2022 года.

Место проведения: ОЦ «Полярис-Адыгея», расположенный по адресу ул. Гагарина, д.13, лаборатория «Биохакинга» (ауд.201).

Формат организации: очная.

Количество учебных часов: 96 учебных часов, включая итоговую конференцию.

Количество часов внеучебной деятельности (общеразвивающие и досуговые мероприятия): 22,5 учебных часов.

Целевой блок программы.

Цель: поиск и поддержка талантливой молодёжи, углубление и расширение их теоретических и практических знаний в области генетики, прогностической и персонализированной медицины, развитие навыков научно-исследовательской работы, умений работы с биологическими объектами в лабораторных условиях.

Задачи:

1. Освоение теоретических знаний в области генетики, иммунологии и медицинской статистики, работы в международных базах данных.

- 2. Овладение умениями выделения ДНК и РНК, секвенирования, постановки полимеразной цепной реакции, иммуноферментного анализа и проточной цитометрии, анализа данных с использованием методов медицинской статистики.
- 3. Формирование навыков решения социально-ориентированных научных проблем: дизайна научных исследований, публикаций, разработки прорывных проектов по выявлению молекулярно-генетических маркеров социально-значимых заболеваний.

Предполагаемые результаты программы:

Участники программы:

- могут самостоятельно разрабатывать дизайн проекта, оформлять доклад и презентацию.
- анализируют информационные источники и работают в современных базах данных.
- получают, анализируют и статистически обрабатывают экспериментальные данные.
- владеют навыками постановки полимеразной цепной реакции, секвенирования нового поколения, анализа экспрессии генов, определения количества малых не кодирующих РНК, иммуноферментного анализа и проточной цитометрии.
- соблюдают правила по технике безопасности.

1. Система диагностики образовательных результатов.

Диагностика проходит в два этапа: начальный и итоговый замер.

Начальные знания, умения и опыт определяются на первых занятиях с помощью проверочных работ.

Итоговый уровень знаний, умений и опыта <u>каждого обучающегося</u> оценивается с помощью экспертной оценки работ/проектов. Итоговый замер происходит на основе Критериев оценки итоговых работ, которые идентичны с критериями Всероссийского научно-технологического конкурса проектов «Большие вызовы» 2022-2023 учебного года. Критерии представлены в Приложении №1. Начальный и итоговый уровень каждого участника программы заносится в Персональную карточку обучающегося. Форма Карточки представлена в Приложении №2.

2. Содержательная характеристика программы

В процессе реализации программы будут освоены следующие разделы: малые не кодирующие РНК, происхождение, функции, подбор праймеров, секвенирование нового поколения, роль цитокинов в патогенезе атеросклероза, дифференцировка NK-клеток при ИБС. Основная идея содержания программы

сформировать у школьников целостное представление о концепции атерогенеза с использованием всех современных методик молекулярной диагностики.

Основные методы и формы реализации содержания программы: проект, аналитическая деятельность и поиск информации, практическая деятельность (моделирование, конструирование, экспериментирование), теоретические лекции, семинары и групповая дискуссия, имитационное моделирование.

При реализации программы будут использованы следующие тренинги образовательные технологии: интерактивные решения лекции, олимпиадных заданий, мастер-классы проектирования моделирования, групповое проектирование, тестирование, лабораторные исследования, дискуссии.

Каждым обучающимся индивидуально или в составе группы будут выполнены следующие работы: проведение секвенирования нового поколения, оценка экспрессию генов, определение количества малых не кодирующих РНК, статистические расчеты, полученных экспериментальных данных с использованием пакета прикладных программ SPSS Statistics 17.0 (Inc., Chicago, USA) и Office Excel 2016 (Microsoft). По окончании обучения всем учащимся предстоит подготовить теоретически обоснованную концепцию проведенного научного исследования в виде итоговой научной работы.

Формулировки проектных задач:

- 1. Влияние -786 T>C (rs2070744) SNP гена NOS3 на риск развития коронарного атеросклероза.
- 2. Экспрессия miR-130a, 181a, miR-26a, 34a у лиц с ишемической болезнью сердна.
- 3. Участие miRNA 146а в регуляции активности медиаторов воспаления у больных ИБС.
- 4. Уровни спонтанной и стимулированной in vitro продукции miRNA-217 в патогенезе атеросклероза.
- 5. CD56+/CD16- и CD56-/CD16+ субпопуляции натуральных киллеров при коронарном атеросклерозе.
- 6. Рецепторный антагонист (IL-1Ra) интелейкина-1 в патогенезе коронарного атеросклероза.
- 7. Влияние -819C/T (rs1800871) SNP гена IL-10 на риск развития коронарного атеросклероза.

3. Учебно-тематический план.

№	Наименование учебных тем	Количеств	Всего часов	
		Теоретические учебные занятия	Практические учебные занятия	96
1	Малые не кодирующие РНК, происхождение,	4	32	36
	функции, подбор праймеров			
2	Секвенирование нового поколения	4	16	20
3	Роль цитокинов в патогенезе атеросклероза	0	16	16
4	Дифференцировка NK-клеток при ИБС	0	16	16
	Итоговая конференция	0	8	8

4. Содержание образовательной программы (реферативное описание тем).

No	Тема	Содержание темы	Формы	Количес
			занятий	TBO
				часов
1	Малые не	Малые некодирующие РНК (мнРНК) – короткие РНК, участвующие в	Лекция,	36
	кодирующие	регуляции экспрессии генов, иммунитете клетки и посттранскрипционных	практич	
	РНК,	модификациях РНК. Среди всего разнообразия мнРНК наибольший интерес	еские	
	происхожден	в плане биомедицинского применения представляют три класса малых РНК:	занятия	
	ие, функции,	малые интерферирующие РНК (миРНК), микроРНК и piwi-interacting РНК		
	подбор	(пиРНК). МиРНК и микроРНК схожи по функциям и механизму действия:		
	праймеров	их главной задачей является сайленсинг генов на посттранскрипционном		
		этапе. В отличие от них, пиРНК обеспечивает, главным образом,		
		стабильность генома эмбриона путем блокирования активности мобильных		
		элементов ДНК. Дисрегуляция мнРНК наблюдается при различных		
		заболеваниях. Установлено, что нарушения экспрессии мнРНК возникают		
		при развитии онкологических, неврологических, сердечно-сосудистых		

		заболеваний, диабете. МнРНК могут выступать в качестве диагностических		
		биомаркеров заболеваний и как компонент генно-терапевтических		
		препаратов. Использование мнРНК как биомаркеров в медицине весьма		
		перспективно, а существующие ограничения связаны со сложностью		
		выявления мнРНК, различающихся одним или несколькими нуклеотидами.		
		Весьма многообещающим является использование мнРНК в генной терапии,		
		поскольку с их помощью гипотетически возможно отключить любой		
		белковый компонент, не изменяя геном, что гораздо безопаснее других		
		предлагаемых методов генной терапии. Главной задачей для клинического		
		использования миРНК и микроРНК на сегодняшний день является создание		
		эффективных систем доставки в клетки-мишени, поскольку несвязанные		
		мнРНК не способны проникать через мембраны и разрушаются под действием ряда ферментов крови и тканей. Таким образом, несмотря на ряд		
		имеющихся проблем, мнРНК являются перспективными агентами для		
2	Caranarranana	диагностики и терапии целого спектра заболеваний.		20
2	Секвенирова	Секвенирование нового поколения (NGS), массовое параллельное или	_	20
	ние нового	глубокое секвенирование — это родственные термины, которые описывают	еские	
	поколения	технологию секвенирования ДНК, которая произвела революцию в	занятия	
		геномных исследованиях. Используя NGS, весь человеческий геном можно		
		секвенировать в течение одного дня. Предыдущая технология, используемая		
		для расшифровки генома человека, потребовала более десяти лет, чтобы		
		получить окончательные результаты.		
		Существует множество платформ, использующих различные		
		технологии секвенирования, подробное обсуждение которых выходит за		
		рамки этой статьи. Однако на всех платформах NGS параллельно		
		выполняется чтение последовательности миллионов мелких фрагментов		
		ДНК. Биоинформатический анализ используется для объединения этих		
		фрагментов путем сопоставления отдельных данных с эталонным геномом.		
		Каждый из трех миллиардов оснований в геноме человека секвенирован		

		WARREN TO THE TOTAL NOTE WARREN TO THE TOTAL THE TOTAL TOTAL WARREN		
		несколько раз. NGS можно использовать для решения последовательности		
		целых геномов или с ограничениями по конкретным областям, включая все		
		22 000 кодирующих генов (экзом) или небольшое количество отдельных		
		генов.		
		NGS позволяет исследовать последовательность без предсказания и		
		начальных данных		
3	Роль	Целый ряд исследований позволил выявить значительные	практич	16
	цитокинов в	молекулярные нарушения с участием цитокинов, действие которых может	еские	
	патогенезе	лежать в основе патологических изменений, наблюдаемых в венозной	занятия	
	атеросклероз	стенке. Цитокины представляют собой разнообразную группу растворимых		
	a	белков короткого действия, гликопротеинов и пептидов, продуцируемых		
		различными иммунными и сосудистыми клетками, которые, действуя в		
		пикомолярных и наномолярных концентрациях, активируют специфические		
		рецепторы и модулируют функции многих клеток и тканей. Цитокины могут		
		быть мембраносвязанными или связанными с внеклеточным матриксом, при		
		этом переключение между растворимыми и мембранными формами является		
		важным регуляторным событием. Разные типы клеток могут секретировать		
		один и тот же цитокин, и один цитокин может действовать на несколько		
		типов клеток (плейотропия), а также влиять на несколько биологических		
		процессов в зависимости от типа клетки, времени и контекста.		
		Очень часто цитокины продуцируются каскадом, поскольку один		
		цитокин стимулирует свои клетки-мишени к выработке других цитокинов.		
		Они могут действовать синергетически (два цитокина или более действуют		
		вместе) или антагонистически (цитокины, вызывающие противоположную		
		активность). Активность цитокинов может быть многонаправленной, и их		
		сходные реакции могут быть вызваны разными цитокинами (англ. crosstalk		
		— перекрестные помехи). Именно из-за функциональной многогранности		
		цитокинов их патофизиологическую роль достаточно сложно изучать.		
4	Дифференци	Все лимфоидные клетки относят к врожденному или адаптивному	практич	16

ровка NK-	звену иммунитета согласно механизмам реализации иммунных реакций.	еские	
клеток при	Реализация функциональной активности NK-клеток не связана с процессами	занятия	
ИБС	предварительной активации в результате контакта с антигеном,		
	реаранжировкой генов антигенраспознающих рецепторов и клональной		
	пролиферацией. В связи с этим NK-клетки традиционно относят к клеткам		
	врожденного иммунитета. Ранее полагали, что единственной популяцией		
	лимфоидных клеток врожденного иммунитета являются NK-клетки, однако		
	в последние годы в литературе появляется все больше свидетельств		
	существования различных популяций этих клеток, что послужило		
	основанием для выделения общего кластера под названием «лимфоидные		
	клетки врожденного иммунитета» (Innate Lymphoid Cells – ILC). По		
	классификации ILC NK-клетки относят к первой группе врожденных		
	лимфоидных клеток согласно их общим функциональным характеристикам,		
	а также участию транскрипционного фактора T-bet в их дифференцировке.		
	Сложность, многоэтапность и частично нелинейный характер		
	дифференцировки NK-клеток связаны с влиянием клеточного		
	микроокружения, последовательной экспрессией транскрипционных		
	факторов и активацией различных внутриклеточных путей передачи сигнала		
	в NK-клетках.		

№ моду ля	Наименование модуля	Основные мероприятия модуля	Кол-во часов	Ответственные за реализацию
1.	Мероприятия обязательные для	Торжественное открытие Осенней проектной Школы	1	Хагур А.А.
	посещения	Торжественное закрытие Осенней проектной Школы	2	Хагур А.А.
		Квест-игра	2	Хагур А.А.
		Посещение мастер-класса на ледовом катке «Оштен»	1,5	Хагур А.А.
		Игра «Что? Где? Когда?»	2	Хагур А.А.
2.	Мероприятия на	Мастер-класс «Мастерство	Продолжительность	Малкова Е.А.
	выбор	выступления»	каждого	
		Эбру-терапия	мероприятия – 2	Бзасежев А.Т.
		Мастер-класс «Основные правила самопрезентации»	часа	Бзасежев А.Т.
		Тренинг «Коммуникация»	На одного ребенка – 14 часов	Ульянцев Р.С.
		Тренинг «Кооперация»		Ульянцев Р.С.
		Тренинг «Критическое мышление»		Ульянцев Р.С.
		Тренинг «Креативное мышление»		Ульянцев Р.С.
		Мастер-класс «Искусство создания презентаций в Power Point»		Уджуху Д.М.
		Мастер-класс «Рисунок в технике акварельного скетчинга»		Тимофеева Т.О.
		Игра «Где логика?	1	Хагур А.А.
		Комната виртуальной реальности	1	Xaryp A.A.
	•	Итого	22,5	

5. Обеспечение программы:

Материальное-техническое обеспечение: помещение, мультимедийная доска, оборудование, необходимое для:

- проведения ИФА: Планшетный монохроматорный флуориметр/люминометр /спектрофотометр CLARIOstar (BMG LABTECH, Германия), Шейкер-термостат (ST3, ELMI, Латвия).
- выделения ДНК/тотальной РНК и её фракций: Термостат «Гном» твердотельный с крышкой 40х1,5 28х0,5 (ДНК-Технология, Россия), Спектрофотометр NanoDrop 2000С (Thermo-system, США), Центрифуга Centrifuge 5430 (Eppendorf), Qubit.
- проведения ПЦР: Амплификатор «Терцик» (ООО «ДНК-технология», Россия), Амплификатор Real-time CFX96 Touch (BioRad, CША), Трансиллюминатор «Квант-С», 20 х 20 см (Компания Хеликон, Россия), Система гель-документирования «Взгляд» (Компания Хеликон; Россия), Амплификатор Gene AMR System9700 (AppliedBiosystem, США), Система визуализации GelDoc XR («Био-Рад», США), Электрофоретическая камера SUB-CELL GT.
- проведения культуральных работ: Ламинарный шкаф I класса безопасности HERAguard 1,8 (Thermo Fisher, CША), Микроскоп биологический для лабораторных исследований Primo Star (Carl Zeiss Microscopy GmbH, Германия), Микроскоп инвертированный AxioVert 40 С (Carl Zeiss, Германия), СО2-инкубатор «СВ 53» (Panasonic, Япония), Система для микроскопии в проходящем свете EVOS ® XL (AppliedBiosystem, США). Центрифуга СМ-6М.01 (ELMI, Латвия). Сортер (BioRad, США) по договору ЦКП.
- для проточной цитометрии: Проточный цитофлуориметр CytoFlex в комплектации B2-R2-V2 (Beckman Coulter, США).
- хранения: Морозильник ультранизко-температурный (вертикальный) (MDF-U5386S, Sanyo, Япония), Холодильники лабораторные (Россия), Холодильники бытовые (Россия).

Имеющееся вспомогательное оборудование, необходимое для выполнения проекта:

- Микроцентрифуга/вортекс FV-2400 со всеми насадками (Biosan Латвия), Одно- и многоканальные дозаторы разных объемов (Thermo Fisher, США), Бокс для стерильных работ UVC/T-M-AR (BioSan, США), Источник питания PowerPack Basic (BioRad, США).
 - Охлаждающая высокоскоростная бенчтоп-центрифуга.

Дидактическое обеспечение, необходимое для реализации программы: собственные разработки лекционных материалов, лабораторных и практических занятий, тестовых заданий повышенной сложности для контроля качества усвоения материала, учебная литература, международные базы данных;

Кадровое обеспечение:

- Тугуз Аминат Рамазановна, д.б.н., профессор кафедры ботаники Адыгейского государственного университета. обучение школьников выделению лимфоидных клеток, стимулированию МНК, отбору супернатантов, постановки иммуноферментного анализа, подготовка проектов, написание тезисов.
- -Бутенко Елена Викторовна, к.б.н., доцент кафедры генетики, академии биологии и биотехнологии им. Д.И. Ивановского, ФГАОУ ВО "Южный федеральный университет" лекции по микро-РНК, обучение подбору праймеров, полиаденилированию микро-РНК, определению экспрессии микро-РНК, подготовка проектов.
- Шумилов Дмитрий Сергеевич, к.б.н., старший научный сотрудник отдела медико-биологических проблем НИИ Комплексных проблем ФГБОУ ВО «Адыгейский государственный университет» обучение школьников современным методам молекулярной диагностики, выделению ДНК, постановки ПЦР, выделению NK-клеток, иммунофенотипированию субпопуляций лимфоидных клеток иммунной системы, подготовка проектов, написание тезисов.

Взаимодействие с другими организациями: Проведении лекционных и практических занятий преподавателями кафедры генетики Южного-федерального университета (Ростов-на Дону). Соглашения о сотрудничестве от 13 марта 2013 года между Южным-федеральным университетом (Ростов-на Дону) и Адыгейским государственным университетом (г. Майкоп, Республика Адыгея).

6. Список литературы и электронные ресурсы программы.

- 1. Abdolmaleki F. et al. Atherosclerosis and immunity: a perspective //Trends in cardiovascular medicine. -2019. T. 29. No. 6. C. 363-371.
- 2. Abel A. M. et al. Natural killer cells: development, maturation, and clinical utilization //Frontiers in immunology. 2018. T. 9. C. 1869.
- 3. Atochina O., Harn D. LNFPIII/LeX-stimulated macrophages activate natural killer cells via CD40-CD40L interaction //Clinical and Vaccine Immunology. 2005. T. 12. №. 9. C. 1041-1049.
- 4. Backteman K., Ernerudh J., Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation //Clinical & Experimental Immunology. -2014. T. 175. N 0.1. C. 104-112.
- 5. Dinh T. N. et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expand CD4+ CD25+ Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis //Circulation. 2012. T. 126. \mathbb{N} 10. C. 1256-1266.
- 6. Jonasson L. et al. White matter fiber tract segmentation in DT-MRI using geometric flows //Medical Image Analysis. -2005. T. 9. No. 3. C. 223-236.
- 7. Karbach S. et al. Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease //Arteriosclerosis, thrombosis, and vascular biology. -2014.-T.34.-N12.-C.2658-2668.

- 8. Kim J. G. et al. Visfatin stimulates proliferation of MCF-7 human breast cancer cells //Molecules and cells. -2010. T. 30. No. 4. C. 341-345.
- 9. Knorr M., Münzel T., Wenzel P. Interplay of NK cells and monocytes in vascular inflammation and myocardial infarction //Frontiers in physiology. -2014.-T.5.-C.295.
- 10. Kumrić M. et al. The role of natural killer (NK) cells in acute coronary syndrome: A comprehensive review //Biomolecules. − 2020. − T. 10. − №. 11. − C. 1514.
- 11. Kumrić M. et al. The role of natural killer (NK) cells in acute coronary syndrome: A comprehensive review //Biomolecules. − 2020. − T. 10. − №. 11. − C. 1514.
- 12. Laskarin G. et al. Tumor-associated glycoprotein (TAG-72) is a natural ligand for the C-type lectin-like domain that induces anti-inflammatory orientation of early pregnancy decidual CD1a+ dendritic cells //Journal of reproductive immunology. -2011.-T.88.-N₂. 1.-C.12-23.
- 13. Li Y. et al. Natural killer cells: friend or foe in metabolic diseases? //Frontiers in Immunology. 2021. T. 12. C. 614429.
- 14. Lynch L. A. et al. Are natural killer cells protecting the metabolically healthy obese patient? //Obesity. -2009. -T. 17. -N0. 3. -C. 601-605.
- 15. Mohmmad- Rezaei M. et al. An overview of the innate and adaptive immune system in atherosclerosis //Iubmb Life. -2021. -T. 73. -N0. 1. -C. 64-91.
- 16. Nijm J. et al. Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease //The American journal of cardiology. -2005. -T. 95. -N. 4. -C. 452-456.
- 17. Ortega F. B. et al. Physical fitness in childhood and adolescence: a powerful marker of health //International journal of obesity. $-2008. T. 32. N_{\odot}. 1. C. 1-11.$
- 18. Ortega-Rodríguez A. C. et al. Altered NK cell receptor repertoire and function of natural killer cells in patients with acute myocardial infarction: A three-month follow-up study //Immunobiology. -2020. -T. 225. -Ne. 3. -C. 151909.
- 19. Ou H. et al. Regulatory T cells as a new therapeutic target for atherosclerosis //Acta Pharmacologica Sinica. -2018. T. 39. No. 8. C. 1249-1258.
- 20. Wang H. X. et al. CD1d-dependent natural killer T cells attenuate angiotensin II-induced cardiac remodelling via IL-10 signalling in mice //Cardiovascular research. -2019.-T.115.-N1.-C.83-93.
- 21. Wihastuti T. A. et al. Lp-PLA2 selective inhibitor (Darapladib) effect in lowering the expression level of IL-1B and IL-6 In the renal at type 2 diabetes mellitus //Vascular Health and Risk Management. 2019. T. 15. C. 503.
- 22. Zhang Z., Dong K., Zhao Z. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst //ChemSusChem. -2011.-T.4.-No.1.-C.112-118.
- 23. Zhao T. X., Newland S. A., Mallat Z. 2019 ATVB plenary lecture: interleukin-2 therapy in cardiovascular disease: the potential to regulate innate and

adaptive immunity //Arteriosclerosis, Thrombosis, and Vascular Biology. $-2020.-T.40.-N_{\odot}.4.-C.853-864.$

Критерии для оценки исследовательских работ/проектов.

Исследовательский (научно-исследовательский) — проект, основной целью которого является проведение исследования, предполагающего получение в качестве результата научного или научно-прикладного продукта (статьи/публикации, отчета, аналитического обзора или записки, заявки на научный грант, методического пособия и т.п.).

Минимальный балл -0. Максимальный балл -13,5.

Критерий 1. Формулирование цели и задач.

- 0 баллов цель работы не поставлена, задачи не сформулированы, проблема не обозначена.
- 1 балл цель обозначена в общих чертах, задачи сформулированы не конкретно, проблема не обозначена.
- 2 балла цель однозначна, задачи сформулированы не конкретно, актуальность проблемы не аргументирована.
- <u>3 балла</u> цель однозначна, задачи сформулированы конкретно, проблема обозначена, актуальна; актуальность проблемы аргументирована.

Критерий 2. Анализ области исследования.

- <u>0 баллов</u> Нет обзора литературы изучаемой области/ область исследования не представлена. Нет списка используемой литературы.
- <u>1 балл</u> Приведено описание области исследования, но нет ссылок на источники. Нет списка используемой литературы.
- <u>2 балла</u> Приведен краткий анализ области исследования с указанием на источники, ссылки оформлены в соответствии с требованиями. Приведен список используемой литературы. Цитируемые источники устарели, не отражают современное представление.
- <u>3 балла</u> Приведен развернутый анализ области исследования с указанием на источники, ссылки оформлены в соответствии с требованиями. Источники актуальны, отражают современное представление.

Критерий 3. Методы, используемы в работе.

0 баллов – Нет описания методов исследования. Нет выборки (если требуется).

- <u>1 балл</u> Дано перечисление методик без подробного описания, выборка отсутствует (если требуется).
- <u>2 балла</u> Методики описаны, но нет обоснования применения именного этого метода, выборка присутствует (если требуется)
- <u>3 балла</u> Методики описаны подробно, приведено обоснование применимости метода, указаны ссылки на публикации применения данной методики. Выборка (если требуется) соответствует критерию достаточности.

Критерий 4. Качество полученных результатов

- <u>0 баллов –</u> Исследование не проведено, результаты не получены, не проведено сравнение с данными других исследований, выводы не обоснованы.
- <u>1 балл</u> Исследование проведено, получены результаты, но они не достоверны. Не проведено сравнение с данными других исследований. Выводы недостаточно обоснованы.
- <u>2 балла</u> Исследование проведено, получены достоверные результаты. Выводы обоснованы. Не показано значение полученного результата по отношению к результатам предшественников в области.
- <u>3 балла</u> Исследование проведено, получены результаты, они достоверны. Выводы обоснованы. Показано значение полученного результата по отношению к результатам предшественников в области.

Критерий 5. Самостоятельность, индивидуальный вклад в исследование

- <u>0,5 баллов</u> Есть понимание сути исследования, личный вклад не конкретен. Уровень осведомлённости в предметной области исследования не позволяет уверенно обсуждать положение дел по изучаемому вопросу.
- <u>1 балл</u> Есть понимание сути исследования, личный вклад и его значение в полученных результатах чётко обозначены. Уровень осведомлённости в предметной области исследования достаточен для обсуждения положения дел по изучаемому вопросу.
- <u>1,5 баллов</u> Есть понимание сути исследования, личный вклад и его значение в полученных результатах чётко обозначены. Свободно ориентируется в предметной области исследования. Определено дальнейшее направление развития исследования.

Результаты диагностики (опросов и экспертной оценки) заносятся в Персональную карточку обучающегося. Обрабатывает все данные руководитель программы.

Анализ диагностических данных и результативность программы представляется в Аналитической справке по тогам реализации программы.

Приложение № 2

Персональная карточка обучающегося

	Фамилия, имя ребенка	Оценки входного контроля по уровням					Итого (Минимальный
Уровень умений и навыков		Способность самостоятельно ставить цели и задачи (Минимальный балл – 0. Максимальный 3 балла)	Умение работать с современными базами данных (Минимальны й балл – 0. Максимальны й 3 балла)	ческими методами (Минимальны	ими методами (Минимальн ый балл – 0.	Способность самостоятельн о проводить исследование (Минимальны й балл – 0. Максимальны й 1,5 балла)	балл — 0. Максимальный балл — 13,5)
начальный уровень (входной контроль)							
		Формулирование цели и задач. Критерий 1. (Минимальный балл – 0. Максимальный 3 балла)	Анализ области исследования Критерий 2 (Минимальный балл – 0. Максимальный 3 балла).	используемы в работе Критерий 3. (Минимальны й бапп – 0	результатов Критерий 4. (Минимальный балл – 0.	Самостоятельность, индивидуальный вклад в исследование Критерий 5 (Минимальный балл – 0. Максимальный 1,5 балла)	балл – 0.
итоговый уровень (оценки жюри)							
ИТОГО	начальный уровень						
	итоговый уровень						